How Close is the Sample Covariance Matrix to the Actual Covariance Matrix?
نویسندگان
چکیده
منابع مشابه
How Close Is the Sample Covariance Matrix to the Actual Covariance Matrix?
Given a probability distribution inRn with general (non-white) covariance, a classical estimator of the covariance matrix is the sample covariance matrix obtained from a sample of N independent points. What is the optimal sample size N = N(n) that guarantees estimation with a fixed accuracy in the operator norm? Suppose the distribution is supported in a centered Euclidean ball of radius O( √ n...
متن کاملHoney, I Shrunk the Sample Covariance Matrix
The central message of this paper is that nobody should be using the sample covariance matrix for the purpose of portfolio optimization. It contains estimation error of the kind most likely to perturb a mean-variance optimizer. In its place, we suggest using the matrix obtained from the sample covariance matrix through a transformation called shrinkage. This tends to pull the most extreme coeff...
متن کاملHow Close Are the Eigenvectors of the Sample and Actual Covariance Matrices?
How many samples are sufficient to guarantee that the eigenvectors of the sample covariance matrix are close to those of the actual covariance matrix? For a wide family of distributions, including distributions with finite second moment and sub-gaussian distributions supported in a centered Euclidean ball, we prove that the inner product between eigenvectors of the sample and actual covariance ...
متن کاملHow close are the eigenvectors and eigenvalues of the sample and actual covariance matrices?
How many samples are sufficient to guarantee that the eigenvectors and eigenvalues of the sample covariance matrix are close to those of the actual covariance matrix? For a wide family of distributions, including distributions with finite second moment and distributions supported in a centered Euclidean ball, we prove that the inner product between eigenvectors of the sample and actual covarian...
متن کاملThe intraclass covariance matrix.
Introduced by C.R. Rao in 1945, the intraclass covariance matrix has seen little use in behavioral genetic research, despite the fact that it was developed to deal with family data. Here, I reintroduce this matrix, and outline its estimation and basic properties for data sets on pairs of relatives. The intraclass covariance matrix is appropriate whenever the research design or mathematical mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical Probability
سال: 2011
ISSN: 0894-9840,1572-9230
DOI: 10.1007/s10959-010-0338-z